My Journey

Classroom connectivity in Algebra I classrooms: results of a randomized control trial

Stephen J. Papea*, Karen E. Irvingb, Douglas T. Owensb, Christy K. Boscardinc, Vehbi A. Sanaland, A. Louis Abrahamsone*, Sukru Kayaf, Hye Sook Shing and David Silverg

Exploring benefits of audience-response systems on learning: a review of the literature

Christy Boscardin 1, William Penuel
Outline

1. Overview of Information Processing Theory
2. Implications for Instruction and Learning
Background on Information Processing Theory

- Theory developed by George Miller (in the 50s) to explain how humans process information.
- Uses computers as a metaphor for the way the humans process information.
- Useful since it specifies a sequence of three stages information goes through to become encoded into long-term memory:
 1. sensory, 2. short-term, and 3. long-term memory.
Information Processing Theory of 3 Stages
(Atkinson and Shiffrin Model)

1. Sensory (Register) Memory
 - Attention
 - Unattended information is lost

2. Working (Short-term) Memory
 - Encoding
 - Consolidation

3. Long-Term Memory
 - Retrieval
Only one of these images of a penny is correct. Which one is it? (POLL)

E. Hmm, can I check my wallet?
Selective Attention: Implications for Teaching

1. Sensory (Register) Memory
2. Working (Short-term) Memory

- Sensory memory works as a filter to selectively move information
- Gorilla experiment [Slide 8]
- Cocktail party phenomenon

Priming the learners:
- Sharing learning objectives/agenda
- Stimulus – Audio (playing music)
- Retrieval/Recall (Polls)
- Emotional trigger (Stories/music/Reflection)
Gorilla Experiment
Encoding from Short-term to Long-term

- Can hold 7 ± 2 information
- Encoding Processing Strategy:
 1. Rote rehearsal
 2. Imagery (Memory Palace)
 3. Chunking/Organizing
 4. Acronym (HOMES)
 5. Elaboration & Reflection
 6. Visual & Audio (Verbal) Reinforcement
 7. Retrieval Practice
Encoding strategies: Chunking Example

Memory Game

<table>
<thead>
<tr>
<th>Fruits</th>
<th>Protein</th>
<th>Baking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananas</td>
<td>Chicken</td>
<td>Baking soda</td>
</tr>
<tr>
<td>Grapes</td>
<td>Pork</td>
<td>Flour</td>
</tr>
<tr>
<td>Apples</td>
<td>Beef</td>
<td>Egg</td>
</tr>
<tr>
<td>Oranges</td>
<td>Turkey</td>
<td>Sugar</td>
</tr>
</tbody>
</table>
Implications for Educational Technology

1. **Attention:**
 - Elicit questions to trigger existing schema (Polls)

2. **Encoding:**
 - Make the content meaningful (Breakout rooms & Elaboration)
 - Breaking-up information (Chunking, Change stimuli: Videos, Audio)

3. **Retrieval**
 - Retrieval practice (Polls)
 - Reflection & Taking Pause (for consolidation)
Part 2: Asynchronous Learning
Revisit Working Memory & Long-Term Memory

1. Sensory (Register) Memory
2. Working (Short-term) Memory
3. Long-Term Memory
Outline

Cognitive Load Theory

Dual Code Theory
Cognitive Load Theory

Intrinsic load: completing learning task

Extraneous load: unproductive attention to distractions, disruptions

Germane load: forming learning schemas, automating
Cognitive load & working memory

- Extraneous load
- Intrinsic load
- Germane load
Implications for Instruction

- **Match intrinsic load**
 - Chunking information
 - Right-size amount of content (20 min)
 - Optimize both visual and audio channels

- **Promote germane load**
 - Optimize visual and auditory channels
 - Chat
 - Zoom polls

- **Minimize extraneous load**
 - Slide design
 - Technology
 - Use familiar terminology
 - Minimize distractions
Paivio Dual Code (Processing) Theory: Cognitive Load
Three Implications for Instruction

- Optimize both verbal and non-verbal channel
- Decrease discordant information (decrease intrinsic)
- Decrease irrelevant information or distractions (decrease extraneous)